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In human participants, the intensive practice of particular cognitive activities can induce sustained improvements in cognitive perfor-
mance, which in some cases transfer to benefits on untrained activities. Despite the growing body of research examining the behavioral
effects of cognitive training in children, no studies have explored directly the neural basis of these training effects in a systematic,
controlled fashion. Therefore, the impact of training on brain neurophysiology in childhood, and the mechanisms by which benefits may
be achieved, are unknown. Here, we apply new methods to examine dynamic neurophysiological connectivity in the context of a random-
ized trial of adaptive working memory training undertaken in children. After training, connectivity between frontoparietal networks and
both lateral occipital complex and inferior temporal cortex was altered. Furthermore, improvements in working memory after training
were associated with increased strength of neural connectivity at rest, with the magnitude of these specific neurophysiological changes
being mirrored by individual gains in untrained working memory performance.
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Introduction
Working memory—the ability to hold in mind and manipulate
small amounts of information for brief periods of time—is a key
requirement for many everyday tasks and is considered a critical
influence on educational progress during childhood (Gathercole
et al., 2003). Training working memory can result in task perfor-
mance benefits that transfer to similarly structured, but un-
trained tasks (Holmes et al., 2009; Dunning et al., 2013).
Cognitive training has therefore been considered of potential
therapeutic benefit for the remediation of cognitive deficits asso-
ciated with neurodevelopmental disorders (Klingberg et al.,
2005), acquired brain damage (Westerberg et al., 2007) and aging
(Anguera et al., 2013). However, despite the growing interest in
cognitive training and claims made about its potential, we know
very little about the neural mechanisms by which training influ-
ences cognitive abilities. This is because it is difficult to combine
longitudinal neuroimaging investigation with systematically

controlled interventions, and this is even more true in target
populations such as children (Jolles et al., 2012; Rueda et al.,
2012). As a result, no study has yet explored whether and how
cognitive training alters neurophysiology during childhood.

Tasks that tax working memory recruit areas in frontal and
parietal cortex, overlapping with networks associated with atten-
tional control (for review, see Duncan, 2010). A popular account
linking frontoparietal activity to working memory performance
is that activity in these domain-general networks codes informa-
tion about fluctuating task goals. During control-demanding
tasks, long-range functional connections between frontoparietal
networks and other cortical areas integrate this higher-order infor-
mation with ongoing processing in lower-level domain-specific sys-
tems (Stokes, 2011). The dynamic regulation of this functional
connectivity provides a basis for integrating and optimizing lower-
level sensory processes necessary in attention-demanding situations
or when attempting to maintain multiple items in working memory
(Gazzaley and Nobre, 2012). Similar functional interactions have
been implicated in working memory performance during childhood
(Astle et al., 2014; Barnes et al., 2015). However, the extent to which
the neurophysiological mechanisms underlying efficient working
memory performance can be modified by training is unknown.

In this study, we tested whether functional connectivity is
altered in childhood by intensive working memory training and,
if so, whether intrinsic changes in connectivity “at rest” are asso-
ciated with any improvements in children’s memory capacity. To
test these hypotheses, 27 typically developing children, aged 8 –11
years old, completed 20 sessions of computerized working mem-
ory training at home. Children were randomly assigned to an
adaptive or placebo condition. Before and after training, all chil-
dren underwent a 9 min resting state magnetoencephalography
(MEG) scan and completed standardized assessments of short-
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term and working memory. We then used resting-state MEG data
to reconstruct electrophysiological oscillatory activity within the
whole brain before and after training. Examining correlations in
oscillatory activity allowed us to investigate whether cognitive train-
ing had any influence upon neurophysiological connections be-
tween frontoparietal networks and cortical areas typically recruited
for working memory or attentional control and how these changes
relate to gains in memory capacity measured outside the scanner.

Materials and Methods
Participants. A total of 33 children between 8 and 11 years of age (mean �
119.2 months; SD � 11.3 months; 12 males) were recruited via local schools
(see also Barnes et al., 2015). The only exclusion criterion was that children
should not have a diagnosis of a developmental disorder or an acquired
neurological condition. All participating children had normal or corrected-
to-normal vision. Children were randomly allocated to either the Adaptive
or Placebo group. Six children failed to complete the training and did not
return for the second session, so subsequent analysis was performed on the
datasets from the remaining 27 children, 14 of whom had been allocated to
the Placebo group and 13 to the Adaptive group. The Adaptive group in-
cluded 3 boys with a mean age of 119.5 months (SD � 9.8 months). The
Placebo group included 7 males with a mean age of 118.8 months (SD�10.8
months). There was no significant difference in age between the two groups
(t(25) � 0.182, p � 0.857), the sex balance did not differ significantly between
the groups (x2 � 2.095, p � 0.148), and the two groups had equivalent IQ
scores (as assessed using vocabulary and matrix reasoning scales from
Wechsler Abbreviated Scale of Intelligence; t(25) � 0.2265, p � 0.8226).
Parents provided written informed consent and the study was approved by
the University of Cambridge Psychology Research Ethics Committee.

Cognitive assessments. Before and after training we assessed each child’s
short-term and working memory ability using four assessments taken
from the Automated Working Memory Assessment (AWMA; Alloway et
al., 2008). We assessed each child’s verbal short-term memory using a
forward digit span procedure and their verbal working memory using a
backward digit span task. We assessed each child’s spatial short-term
memory using a dot matrix task in which they had to retain a number of
spatial locations and then report them in sequence. Each child’s spatial
WM was assessed using a spatial span task in which they had to retain the
locations of a sequence of dots for subsequent recall while performing a
series of mental rotations. To characterize our sample, we converted

performance into age-independent standardized scores. For one child,
we only had scores in the spatial domain. Across these assessments, there
were no pretraining differences between the groups. Verbal short-term
memory: Adaptive � 116 (SD � 19) versus Placebo � 118 (SD � 16;
t(24) � 0.397, p � 0.695); verbal working memory: Adaptive � 106 (SD �
21) versus Placebo � 111 (SD � 13; t(24) � 0.645, p � 0.525); spatial
short-term memory: Adaptive�109 (SD�15) versus Placebo�107 (SD�
14; t(25) � 0.335, p � 0.741); spatial working memory: Adaptive � 116
(SD � 14) versus Placebo � 115 (SD � 11; t(25) � 0.139, p � 0.891).

The initial short-term and working memory assessments were re-
peated after the respective training programs. Assessments at both time
points were conducted by a member of the research team who was
blinded to the group to which the children had been allocated. Parents
were made aware of the existence of an intergroup experimental manip-
ulation, but were not informed as to the nature of it. Children and par-
ents were blinded to group allocation.

Cognitive training. Both groups performed the training at home and
each child’s progress was remotely monitored online by the research
team. Children performed a minimum of 20 sessions, with an upper limit
of 25 sessions, over 4 – 6 weeks. Each training session comprised 8 tasks
(from a bank of 12 possible tasks). In each session, children performed 15
trials of each task, giving a total of 120 trials per training session (a total
duration of 30 – 45 min per session). The children in the Adaptive group
received a commercially available version of this program, which was not
changed for these purposes, with task difficulty being adjusted on a trial-
by-trial basis according to the child’s improving performance. Each task
required children to retain either verbal or visual information for brief
periods of time, often with concurrent processing or mental manipula-
tion of the material required (see www.cogmed.com/rm for full details).
The children assigned to the Placebo group completed an identical training
program save for the fact that the tasks did not get progressively more diffi-
cult in response to the child’s performance, with the span level set to two
items across all trials (see also Dunning et al., 2013 and Holmes et al., 2009).

MEG data acquisition and basic preprocessing. Our MEG data acquisi-
tion and analysis pipeline can be seen in Figure 1; the details of these steps
are provided in the following sections.

The same procedure for MEG data acquisition was used for both the
pretraining and posttraining scans. MEG data were acquired with a high-
density whole-head VectorView MEG system (Elekta-Neuromag) con-
taining a magnetometer and two orthogonal planar gradiometers at 102

Figure 1. The MEG acquisition and analysis pipeline.
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positions (306 sensors in total), housed in a magnetically shielded room.
Data were sampled at 1 kHz and signals slower than 0.01 Hz were not
recorded. A 3D digitizer (FASTRACK; Polhemus) was used to record the
positions of five head position indicator (HPI) coils and 50 –100 addi-
tional points evenly distributed over the scalp, all relative to the nasion
and left and right preauricular points. We also attached an electrode to
each wrist to measure the pulse and bipolar electrodes to obtain horizon-
tal (HEOGs) and vertical (VEOGs) electrooculograms. Head position
was monitored throughout the recoding using the HPI coils. Particularly
small children were seated on a booster seat to ensure that their head was
optimally positioned within the scanner helmet. For resting-state data
acquisition, children were instructed to close their eyes, let their mind
wander, and not think of anything in particular for the duration of the
scan. Data acquisition lasted 9 min. All children were monitored by video
camera throughout the scan and no child reported having fallen asleep.

External noise was removed from the MEG data using the signal-space
separation method, and adjustments in head position within the recording
were compensated for using the MaxMove software, both implemented in
MaxFilter version 2.1 (Elekta Neuromag). At this stage, the data were down-
sampled to 250 Hz. The continuous data were visually inspected and any
short sections with large signal jumps were removed. A sensor-space tempo-
ral independent components analysis (ICA) was then used to remove arti-
facts arising from blinks, saccades, and pulse-related cardiac artifacts using a
combination of metrics and manual inspection. The temporal ICA was con-
ducted separately for each subject using fastICA run on the sensor space data
and then the time course of each IC was correlated with the time course of the
VEOG, HEOG, and cardiac channels, respectively. Components with a Pear-
son correlation value �0.1 with any of the artifact channels were subse-
quently removed from the data. Components dominated by 50 Hz noise
were also removed.

MEG source reconstruction. For 23 of the children, we coregistered their
MEG data to the child’s T1-weighted structural MRI image acquired
using a 3T Siemens Tim Trio and an MPRAGE sequence. For the remain-
ing children, we used a standard MNI template (Barnes et al., 2015). For
this coregistration, we used the digitized scalp locations and fiducials
via an iterative closest point algorithm using SPM8 (http://www.fil.
ion.ucl.ac.uk/spm/). beamforming the data were band-pass filtered to
focus only on the slower frequencies (theta: 4–7 Hz; alpha: 8–12 Hz; lower
beta: 13–20 Hz; upper beta: 21–30 Hz); previous work has shown that these
slower frequencies are better for exploring functional connections with MEG
and increase discrimination between spurious and genuine connectivity
(Luckhoo et al., 2012). For each subject, source space activity was estimated
at every vertex of a 6 mm grid covering the entire brain using a linearly
constrained minimum variance beamformer (Van Veen et al., 1997). The
beamformer combined information from both the magnetometers and pla-
nar gradiometers while taking into account the reduced dimensionality of
the data introduced by the signal-space separation algorithm (Woolrich et
al., 2011). Beamforming constructs a set of spatial filters that are applied to
the sensor data to reconstruct the signal at each grid point with the aim of
achieving unit band-pass response at the grid point while minimizing the
variance passed from all other locations. This facilitates the identification of
genuine functional connections rather than the effects of signal spread
(Schoffelen and Gross, 2009) and acts to reduce noise. The process was repeated
across all grid locations to achieve a whole-brain source reconstruction.

Hilbert envelope estimation, temporal down-sampling, and concatena-
tion. Once the data were in source space, the oscillatory amplitude enve-
lopes of the reconstructed time series were estimated via computation of
the absolute value of the analytic signal, which was found using a Hilbert
transform. This yielded an estimate of instantaneous signal amplitude at
each voxel. The envelope time series for every voxel was low-pass filtered
by dividing each envelope time course into 1 s windows and averaging
within those windows to focus on low-frequency power fluctuations that
are thought to be direct manifestations of electrophysiological functional
connectivity (Brookes et al., 2011). Both weight-normalized and non-
weight-normalized envelopes were estimated for use in the group-level
(general linear model, GLM) analysis (Luckhoo et al., 2014). Spatial
smoothing was also applied to the down-sampled envelope estimates
(full-width half-maximum � 5 mm). Finally, the children’s data were
temporally concatenated to produce a single dataset.

MEG-adapted dual regression. The next step of our analysis used the
temporally concatenated down-sampled envelope data to explore func-
tional connectivity. We used an independent canonical set of resting state
networks (RSNs) taken from a recent functional connectivity (fc)-fMRI
study (Smith et al., 2012) as a basis for the analysis and looked for changes
specifically within the left and right lateral frontoparietal networks and
bilateral frontoparietal networks. We chose these networks a priori be-
cause they represent our best approximation of those cortical networks
particularly linked to attentional control and working memory in adult-
hood. We tested whether differences in these networks, or in the areas
that communicate with them, might underpin any significant changes in
working memory capacity stemming from the intervention. A further
advantage of choosing networks a priori from this independent dataset is
that the nodes are particularly focal, making it easier to unambiguously
identify distinct frontoparietal networks and relate any findings across dif-
ferent studies (Barnes et al., 2015).

To extract subject specific maps for each of the fc-fMRI networks, we
performed a MEG-adapted dual regression (DRMEG) analysis analo-
gous to that used in fMRI data (Filippini et al., 2009). In the first stage of
DRMEG, we performed a spatial regression of the fc-fMRI network maps
on the concatenated weights-normalized envelopes to yield concatenated
network time courses. In the second stage, we broke these concatenated
time courses into subject specific blocks. For each subject, we performed
a temporal regression of the network time course segment from the
non-weight-normalized down-sampled envelopes. This gave a spatial
map for each RSN that was specific to each subject but critically had an
unbiased estimate of the true variance of activity for that RSN, which was
essential for all subsequent multisubject statistics (Luckhoo et al., 2014). The
result of the dual regression was that, for each child, we obtained a whole-
brain map that corresponded to the voxel-by-voxel electrophysiological
connectivity with each of these candidate networks before and after training.
In short, this step enabled us to look at covariation between oscillatory activ-
ity in our networks of interest and the rest of the brain. Importantly, taking
this whole-brain connectivity approach rather than simply looking at overall
changes in the activity levels of particular RSNs enabled us to specify which,
if any, neurophysiological connections correspond to training gains.

GLM. We then tested the hypothesis that specific connections with our
candidate networks are altered by the intervention, using a whole-brain
GLM. First, we tested for an interaction between time and group by
including this as a regressor in our GLM. The result was a voxelwise GLM
in which we could identify any significant interaction between time and
group. We also controlled for any impact of initial ability on functional
connectivity. We included variables identifying each subject as covari-
ates, which effectively regresses out the subjects’ means, leaving a paired
test on within-subject effects. We also controlled for any impact of initial
ability on functional connectivity.

However, this group-level approach is a relatively superficial way of
testing the hypothesis that changes in working memory capacity and
changes in intrinsic brain connectivity are significantly related. Simply
because a child is assigned to the adaptive training program does not
guarantee that there will be any change to their working memory capac-
ity. Likewise, performing the placebo training each day may produce
some benefits for some children. A more direct way of exploring the
relationship between changes in brain connectivity and working memory
capacity would be to conduct a GLM that incorporates information
about the impact of the intervention across children regardless of group
membership. Therefore, we complemented our first GLM with a subse-
quent analysis in which the first regressor corresponded to the relation-
ship between working memory scores (taken as the mean raw score on
the untrained assessments) and connectivity after training. The second
regressor corresponded to the relationship between working memory scores
and connectivity before training. In this second GLM, we could then explore
the relationship between functional connectivity and working memory ca-
pacity after training while controlling for any relationship before training.
This is analogous to testing for a relationship between changes in brain
connectivity and changes in working memory capacity. As before, we also
included regressors that corresponded to the subject mean for each child.

Correcting for multiple comparisons. The whole-brain outputs of our
two GLMs were fed into a permutation procedure to correct for multiple
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comparisons. We adopted a standard procedure for testing the hypoth-
esis that there are no contiguous regions where there are explained dif-
ferences in resting-state connectivity. We did not use the standard
clustering threshold of p � 0.05 because, for each voxel, the effect of a
particular GLM was repeated over three candidate networks and four
frequencies. The threshold was Bonferonni corrected, which produced a
clustering threshold of p � 0.004. In practice, because two-tailed testing was
conducted (because it is theoretically possible that training might be associ-
ated with either positive or negative effects), this meant thresholding at an
upper and lower limit of alpha equal to 0.002. Once we had used this thresh-
old to identify any clusters of voxels that exceed this level and established the
relative size of these clusters, we conducted a sign-flipping permutation pro-
cedure to produce a null distribution using 5000 permutations. We were
then able to compare the size of each result to this null distribution, thereby
identifying the relative alpha level and producing a p-value that controls for
the multiple comparisons across the 8471 voxels. This nonparametric per-
mutation approach has a number of advantages relative to more traditional
approaches to significance testing with electrophysiological data: First, it
makes no a priori assumptions about when or where effects are likely to be
apparent; second, this approach accounts for multiple comparisons over
space and time, restoring control to the false-positive rate (Kilner, 2013).

Results
Adaptive training boosts working memory capacity
After training, the Adaptive group demonstrated significant improve-
ments in standardized scores on the untrained short-term and working
memory assessments (pretraining vs posttraining: F(1,12) � 45.072, p �
0.001), but not so for the Placebo group (pretraining vs posttraining:
F(1,13) �3.572, p�0.081), resulting in a significant interaction between
groupandtime(F(1,24)�20.500,p�0.001;Figure2).Thiseffectdidnot
differ significantly across the verbal or spatial measures from the assess-
ment battery (3-way interaction: F(3,72) � 0.436, p � 0.728).

Adaptive training enhances resting functional connectivity
We conducted a whole-brain connectivity analysis based upon
the independent set of seed networks. These networks were cho-
sen a priori because they are routinely linked with attentional
control and working memory. In the lower beta-band (13–20
Hz), we identified a significant effect of the group by time inter-
action involving connectivity between the right-hemisphere
frontoparietal network and left lateral occipital cortex (LOC) that
survived our multiple-comparisons correction (pcorrected �
0.0496; Figure 3A); that is, the two groups differ after training,
but not before. Figure 3B shows the mean connectivity values in
the left LOC area for each group before and after training.

However, this is not the most direct way of exploring the

neural effects of cognitive training because it does not take ac-
count of the actual change in working memory across the training
period. In reality, the benefits of training are variable across chil-
dren. For this reason, we used a second GLM that captured the
linear relationship between individual gains in working memory
and changes in functional connectivity. We observed two signif-
icant effects, both being lower beta-band connections with a bi-
lateral frontoparietal network that comprised bilateral superior
parietal cortex and frontal eye-fields (Fig. 4A). The first signifi-
cant effect was within the network itself, in the left superior pari-
etal lobule (pcorrected � 0.0392); the second was in left inferior
temporal (IT) cortex (pcorrected � 0.0190) close to area IT. The
relationship in these areas, between change in connectivity and
change in ability, can be seen in Figure 4, B and C. Again, these
results are corrected for multiple comparisons across all voxels,
seed networks, and frequencies. We used these scatter plots to check
that the significant relationships between changes in connectivity
and changes in working memory capacity were not unduly biased by
individual cases. To test this formally, we calculated Cook’s distance,
which quantifies the influence of each data point on the overall
strength of the relationship. Across the plots shown in Figure 4, B
and C, the highest Cook’s distance value for any data point is 0.13.
This falls well below the typically used threshold of 1. The same
pattern, of increasing connectivity with increasing working memory
gains, is present in the connection identified by the first GLM, a
scatterplot of which can be seen in Figure 3C. There were no signif-
icant negative effects associated with the cognitive training.

Resting-state networks at 13–20 Hz
The GLM analyses identified two resting-state networks that were
altered by working memory training, both in the 13–20 Hz range.
We subsequently tested whether our results reflect training-
related neurophysiological changes to preexisting functional net-
works at this frequency band. To do this, we conducted an
additional analysis on the pretraining data. We submitted our
source-projected temporally concatenated down-sampled enve-
lope data at 13–20 Hz to a temporal ICA. This ICA reduces the
8417 location-specific time courses to a set of 25 underlying com-
ponents that have temporally distinct power fluctuations in the
13–20 Hz range. Importantly, the ICA is blind to the spatial locations
of those original recordings. The resulting component time courses
could then be correlated with the original location-specific envelope
time courses to produce spatial maps of the underlying components.
This is the same approach used by Brookes et al. (2011) to study
resting-state networks using oscillatory data. Even though we did not
provide the ICA with any spatial information, two of the resulting
component maps were highly overlapping with the networks from
the independent fc-fMRI dataset implicated by our analysis. Figure 5
shows the two networks significantly altered by the training. Also
shown in Figure 5 are the component maps produced by our tem-
poral ICA. We used the FSL tool fslcc to test whether there was
significant spatial overlap between the two independent datasets by
calculating spatial cross-correlations. These could then be converted
into z statistics to provide a statistical test of the spatial overlap. These
show that these ICA-derived 13–20 Hz maps are indeed significantly
related to their fc-fMRI counterparts (right-hemisphere fronto-pa-
rietal: r � 0.27, z � 26.1638, p � 0.001; bilateral fronto-parietal: r �
0.38, z � 36.8142, p � 0.001). This demonstrated that there was
activity in the 13–20 Hz range in our networks of interest before
training. Furthermore, it showed that the endogenous ongoing
13–20 Hz activity is robust enough that it can be used to define the
spatial extent of the networks.

Figure 2. Performance on the standardized working memory assessments in both groups,
before and after training. Error bars indicate the SEM.
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Discussion
After 20 sessions of adaptive working memory training, chil-
dren’s working memory capacity was substantially increased, rel-
ative to a group of children that received a placebo intervention.
These capacity gains were mirrored by changes in resting brain
connectivity. We identified significant changes to connectivity
between a right-lateralized frontoparietal network and left lateral
occipital cortex with training. This result was apparent as a

group-level training effect (Adaptive vs Placebo). We also ob-
served considerable variation between individual subjects in the
magnitude of change in working memory performance before
and after the intervention. The second GLM analysis explored
sources of this variation without presuming that the major deter-
minant was adaptive versus placebo training condition. This
identified a significant enhancement of connectivity between a
bilateral frontoparietal network, superior parietal cortex, and a

Figure 3. A, Red-orange areas correspond to a right hemisphere frontoparietal seed network (Smith et al., 2012). The green area highlights an area of functional interaction with this network that
demonstrates a significant interaction between group (Adaptive vs Placebo) and time (pretraining versus posttraining) in the first GLM analysis, corrected for multiple comparisons across voxels, seed networks,
andfrequencies.B,ConnectivityvaluesforleftLOCforeachinterventiongroupbeforeandaftertraining.C,Changesinconnectivityvaluesforindividualsubjectsacrossbothinterventionconditionsplottedagainst
changes in working memory capacity after training. In all cases, the error bars correspond to the SEM. All of the measures of connectivity show normalized parameter estimates from the GLM.

Figure 4. A, Red-orange areas correspond to a bilateral seed network including superior parietal and middle frontal gyri (Smith et al., 2012). The green area highlights significant effects of
working memory ability posttraining while controlling for working memory ability pretraining. This result is corrected for multiple comparisons across voxels, seed networks, and frequencies. B and
C, Relationship between changes in working memory ability (posttraining minus pretraining) and changes in connectivity in the inferior temporal cortex (r � 0.68, p � 0.001) (B) and the superior
parietal lobule (r � 0.65, p � 0.001) (C). All of the measures of connectivity show normalized parameter estimates from the GLM.
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portion of inferior temporal cortex close to area IT. Across these
dynamic functional systems, connectivity changes associated
with training were greatest in those who showed the biggest im-
provement in working memory capacity.

These associated changes in memory capacity and brain con-
nectivity over time could be explained by differences between
children in the rate of intrinsic neural and cognitive development
occurring in parallel with the study. Although difficult to rule out
with this type of analysis, it is important to remember that the
time period of the intervention was relatively short and the age
range of our sample is small. Even though all children will have
developed over this period, which could have contributed to the
overall difference between Time 1 and Time 2, this cannot ex-
plain the differential changes to capacity and connectivity that we
see across the children. Furthermore, even though the second
analysis did not include group as a factor, from the scatter plots,
we can see that the strongest predictor of the size of working
memory and connectivity change was group membership. There-
fore, intrinsic developmental rate would have to be distributed
unequally between groups by chance for this factor to explain the
differences observed. We would suggest instead that the double-
blind, randomized-controlled design of the current study pro-
vides strong evidence that training-induced changes in working
memory are associated with significant changes in resting brain
connectivity.

Previous studies of the neurophysiological mechanisms of at-
tentional control and working memory have highlighted the im-
portance of long-range functional connections. For example,
intracranial recording techniques have shown that neuronal os-
cillatory signals between the frontal eye fields (FEFs) and area V4
become synchronized when attentional control is engaged (Gre-
goriou et al., 2009). Similar processes have been observed in hu-
man subjects using BOLD-based imaging, with top-down inputs
into LOC acting to bias processing in favor of relevant represen-
tations over competing representations (Stokes et al., 2009).
These long-range connections, typically between areas in frontal
and parietal cortex (including dorsolateral prefrontal cortex, the

FEFs, and the superior and inferior parietal cortex) and lower-
level processing areas (including LOC and areas IT and V4), en-
able the dynamic regulation of ongoing processing according to
fluctuating task goals (for review, see Desimone and Duncan,
1995). Our results demonstrate that working memory training is
associated with the enhancement of these functional connections
in childhood and that the magnitude of these specific neurophys-
iological changes is mirrored by individual gains in similarly
structured but untrained working memory exercises. A plausible
explanation for these results is that the enhanced coordination
between these areas, apparent even at rest, allows for better reg-
ulation of ongoing sensory and cognitive processes and thereby
affords greater performance on control demanding working
memory exercises. However, this remains only a suggestion.
With the current data alone, there remain a number of possibil-
ities as to how adaptive training mediates the observed effects of
neural processing and cognitive performance and why this effect
varies between individuals, even between those subjected to the
same training protocol. One possibility is that children vary in their
degree of motivation and that this mediates the impact of the inter-
vention. Furthermore, the increasing task difficulty in the adaptive
condition may promote this motivation rather than, or in addition
to, affecting specific cognitive processes.

Cognitive training was associated with altered connectivity
within the 13–20 Hz frequency band and a subsequent analysis
revealed that ongoing endogenous activity in this bandwidth can
be used to characterize the networks implicated in the training
effects; that is, the training influences ongoing rhythmic activity
within these networks that is apparent before training. Top-down
modulation of the alpha and lower beta activity within sensory
cortex is consistently and critically linked to perceptual sensitivity
(for review, see Hanslmayr et al., 2011). A popular mechanistic
account of attentional control is that it is enacted via the modu-
lation of relatively slow-frequency oscillations in sensory cortex
in the alpha and lower beta range. The modulation of these
rhythms represents a physiological mechanism by which task
control centers can gate the ongoing processing of sensory input

Figure 5. The two networks significantly altered after working memory training, which are spatially defined using an independent fc-fMRI dataset from Smith et al. (2012). As in previous figures,
any green areas correspond to significant effects from either of the GLM analyses. The lower set of maps shows the result of a spatially blind temporal ICA conducted on the temporally down-sampled
concatenated Hilbert envelope data, also in the 13–20 Hz range, before training.
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according to its relevance (van Ede et al., 2011). These same top-
down modulatory signals are also present at different stages of
working memory encoding, storage and retrieval (for review, see
Gazzaley and Nobre, 2012). We suggest that working memory
training may result in capacity gains because it intensively taxes
these control mechanisms, resulting in their enhancement. This
enhancement is apparent even at rest in the endogenous coordi-
nation of activity between areas in frontoparietal cortex and areas
in inferior temporal cortex (close to area IT) and LOC. Moreover,
these enhancements occur at a frequency previously associated
with attentional control mechanisms (Hanslmayr et al., 2011).

This study represents the first systematic demonstration that
cognitive training augments intrinsic neurophysiological brain
connectivity in childhood. Because this effect is observed “at
rest,” this training-related difference in intrinsic connectivity
cannot be attributed to differences in motivation or strategy per
se (because the children are not performing any task during the
scan). Furthermore, because we use MEG, which is a direct mea-
sure of neural activity, our effects cannot be attributed to differ-
ences in blood flow or metabolism (Schmithorst et al., 2015). A
subsequent challenge is to test whether and how the identified
mechanisms can be harnessed via cognitive training to produce
therapeutic benefits that extend to aspects of everyday life for
diverse target populations with either developmental or acquired
deficits.
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